Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
نویسنده
چکیده مقاله:
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular inequalities hold must have constant oscillation. Also we study the boundedness of integral operator $Tf(x)=int K(x,y) f(x)dy$ on $L^{p(.)}$ when the variable exponent $p(.)$ satisfies some uniform continuity condition that is named $beta$-controller condition and so multiple interesting results which can be seen as a generalization of the same classical results in the constant exponent case, derived.
منابع مشابه
Vector-valued Inequalities on Herz Spaces and Characterizations of Herz–sobolev Spaces with Variable Exponent
The origin of Herz spaces is the study of characterization of functions and multipliers on the classical Hardy spaces ([1, 8]). By virtue of many authors’ works Herz spaces have became one of the remarkable classes of function spaces in harmonic analysis now. One of the important problems on the spaces is boundedness of sublinear operators satisfying proper conditions. Hernández, Li, Lu and Yan...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملInterpolation in Variable Exponent Spaces
In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale.
متن کاملOn Variable Exponent Amalgam Spaces
We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...
متن کاملCoherence Spaces and Uniform Continuity
In this paper, we consider a model of classical linear logic based on coherence spaces endowed with a notion of totality. If we restrict ourselves to total objects, each coherence space can be regarded as a uniform space and each linear map as a uniformly continuous function. The linear exponential comonad then assigns to each uniform space X the finest uniform space !X compatible with X . By a...
متن کاملGeneralization Performance of Some Learning Problems in Hilbert Functional Spaces
We investigate the generalization performance of some learning problems in Hilbert functional Spaces. We introduce a notion of convergence of the estimated functional predictor to the best underlying predictor, and obtain an estimate on the rate of the convergence. This estimate allows us to derive generalization bounds on some learning formulations.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 2
صفحات 29- 38
تاریخ انتشار 2016-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023